Answer:
a)N = 3.125 * 10¹¹
b) I(avg) = 2.5 × 10⁻⁵A
c)P(avg) = 1250W
d)P = 2.5 × 10⁷W
Step-by-step explanation:
Given that,
pulse current is 0.50 A
duration of pulse Δt = 0.1 × 10⁻⁶s
a) The number of particles equal to the amount of charge in a single pulse divided by the charge of a single particles
N = Δq/e
charge is given by Δq = IΔt
so,
N = IΔt / e

N = 3.125 * 10¹¹
b) Q = nqt
where q is the charge of 1puse
n = number of pulse
the average current is given as I(avg) = Q/t
I(avg) = nq
I(avg) = nIΔt
= (500)(0.5)(0.1 × 10⁻⁶)
= 2.5 × 10⁻⁵A
C) If the electrons are accelerated to an energy of 50 MeV, the acceleration voltage must,
eV = K
V = K/e
the power is given by
P = IV
P(avg) = I(avg)K / e

= 1250W
d) Final peak=
P= Ik/e
=

P = 2.5 × 10⁷W