187k views
2 votes
A 0.10 M imidazole solution has a pH of 6.6. To the nearest hundredth of a unit, what fraction of the molecules are in the neutral (imidazole) form? (The pKa of the imidazolium ion is 6.0.)

1 Answer

3 votes

Answer : The fraction of the molecules in the neutral (imidazole) form are, 0.799

Explanation : Given,

pH = 6.6


p_(K_a)=6.0

Using Henderson Hesselbach equation :


pH=pK_a+\log ([Salt])/([Acid])


pH=pK_a+\log \frac{[\text{Imidazole}]}{[\text{Imidazolium ion}]}

Now put all the given values in this expression, we get:


6.6=6.0+\log \frac{[\text{Imidazole}]}{[\text{Imidazolium ion}]}


\frac{[\text{Imidazole}]}{[\text{Imidazolium ion}]}=10^(6.6-6.0)


\frac{[\text{Imidazole}]}{[\text{Imidazolium ion}]}=10^(0.6)


\frac{[\text{Imidazole}]}{[\text{Imidazolium ion}]}=3.98


[\text{Imidazole}]=3.98[\text{Imidazolium ion}] ...........(1)

Now we have to determine the fraction of the molecules are in the neutral (imidazole) form.

Fraction of neutral imidazole =
\frac{[\text{Imidazole}]}{[\text{Imidazole}]+[\text{Imidazolium ion}]}

Now put the expression 1 in this expression, we get:

Fraction of neutral imidazole =
\frac{3.98[\text{Imidazolium ion}]}{3.98[\text{Imidazolium ion}]+[\text{Imidazolium ion}]}

Fraction of neutral imidazole =
\frac{3.98[\text{Imidazolium ion}]}{4.98[\text{Imidazolium ion}]}

Fraction of neutral imidazole =
(3.98)/(4.98)

Fraction of neutral imidazole = 0.799

Thus, the fraction of the molecules in the neutral (imidazole) form are, 0.799

User Lulop
by
4.1k points