187k views
2 votes
A 0.10 M imidazole solution has a pH of 6.6. To the nearest hundredth of a unit, what fraction of the molecules are in the neutral (imidazole) form? (The pKa of the imidazolium ion is 6.0.)

1 Answer

3 votes

Answer : The fraction of the molecules in the neutral (imidazole) form are, 0.799

Explanation : Given,

pH = 6.6


p_(K_a)=6.0

Using Henderson Hesselbach equation :


pH=pK_a+\log ([Salt])/([Acid])


pH=pK_a+\log \frac{[\text{Imidazole}]}{[\text{Imidazolium ion}]}

Now put all the given values in this expression, we get:


6.6=6.0+\log \frac{[\text{Imidazole}]}{[\text{Imidazolium ion}]}


\frac{[\text{Imidazole}]}{[\text{Imidazolium ion}]}=10^(6.6-6.0)


\frac{[\text{Imidazole}]}{[\text{Imidazolium ion}]}=10^(0.6)


\frac{[\text{Imidazole}]}{[\text{Imidazolium ion}]}=3.98


[\text{Imidazole}]=3.98[\text{Imidazolium ion}] ...........(1)

Now we have to determine the fraction of the molecules are in the neutral (imidazole) form.

Fraction of neutral imidazole =
\frac{[\text{Imidazole}]}{[\text{Imidazole}]+[\text{Imidazolium ion}]}

Now put the expression 1 in this expression, we get:

Fraction of neutral imidazole =
\frac{3.98[\text{Imidazolium ion}]}{3.98[\text{Imidazolium ion}]+[\text{Imidazolium ion}]}

Fraction of neutral imidazole =
\frac{3.98[\text{Imidazolium ion}]}{4.98[\text{Imidazolium ion}]}

Fraction of neutral imidazole =
(3.98)/(4.98)

Fraction of neutral imidazole = 0.799

Thus, the fraction of the molecules in the neutral (imidazole) form are, 0.799

User Lulop
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.