235k views
5 votes
Write out the form of the partial fraction decomposition of the function (See Example). Do not determine the numerical values of the coefficients. (If the partial fraction decomposition does not exist, enter DNE.) (a) x4 + 7 x5 + 5x3 A x​+ B x2​+ C x3​+ Dx+E x2+5​ (b) 2 (x2 − 9)2

User Schub
by
7.6k points

1 Answer

4 votes

Answer:

a.
(A)/(x)+(B)/(x^2)+(C)/(x^3)+(Dx+E)/(x^2+5)

b.
(A)/(x+3)+(B)/(x-3)+(C)/((x-3)^2)+(D)/((x+3)^2)

Step-by-step explanation:

a.We are given that


(x^4+7)/(x^5+5x^3)


(x^4+7)/(x^5+5x^3)=(x^4+7)/(x^3(x^2+5))

Using partial fraction decomposition of the given function


(x^4+7)/(x^3(x^2+5))=(A)/(x)+(B)/(x^2)+(C)/(x^3)+(Dx+E)/(x^2+5)

Using the formula


(1)/(x^3(x^2+a))=(A)/(x)+(B)/(x^2)+(C)/(x^3)+(Dx+E)/(x^2+a)

b.
(2)/((x^2-9)^2)


(2)/((x^2-3^2)^2)=(2)/((x+3)^2(x-3)^2)

Using property
a^2-b^2=(a+b)(a-b)


(2)/((x+3)^2(x-3)^2)=(A)/(x+3)+(B)/(x-3)+(C)/((x-3)^2)+(D)/((x+3)^2)

Using the property


(1)/(x^2)=(A)/(x)+(B)/(x^2)

User Jin Kwon
by
7.7k points