Answer:
![3.34\Omega](https://img.qammunity.org/2021/formulas/physics/high-school/uba8bn7o72936x62d8z9bb5h0y6myse6pl.png)
Step-by-step explanation:
The resistance of a metal rod is given by
![R=(\rho L)/(A)](https://img.qammunity.org/2021/formulas/physics/college/a6gx6oese6otobqfzt2lfwkf8owzrcn61i.png)
where
is the resistivity
L is the length of the rod
A is the cross-sectional area
The resistivity changes with the temperature as:
![\rho(T)=\rho_0 (1+\alpha (T-T_0))](https://img.qammunity.org/2021/formulas/physics/high-school/9xr7fi4zrrmorvx9kk4mvxvh774cu383zm.png)
where in this case:
is the resistivity of silver at
![T_0=21.0^(\circ)C](https://img.qammunity.org/2021/formulas/physics/high-school/8yrt64kno7f3odb79y4isqvpk4lty4g8k3.png)
is the temperature coefficient for silver
is the current temperature
Substituting,
![\rho(180^(\circ)C)=\rho_0 (1+6.1\cdot 10^(-3)(180-21))=1.970\rho_0](https://img.qammunity.org/2021/formulas/physics/high-school/o7wzsm7c2z2cd0ftf1xawttmgku6dko3cx.png)
The length of the rod changes as
![L(T)=L_0 (1+\alpha_L(T-T_0))](https://img.qammunity.org/2021/formulas/physics/high-school/iywkxdai7vg9c0220pky5h8aow90a742io.png)
where:
is the initial length at
![21.0^(\circ)C](https://img.qammunity.org/2021/formulas/physics/high-school/yvhgm8u2pbyhnigrab5y3ittsrpiujciob.png)
is the coefficient of linear expansion
Substituting,
![L(180^(\circ)C)=L_0(1+18\cdot 10^(-6)(180-21))=1.00286L_0](https://img.qammunity.org/2021/formulas/physics/high-school/d79at3uiswjq0xub31ldj0043dv6y9ctec.png)
The cross-sectional area of the rod changes as
![A(T)=A_0(1+2\alpha_L(T-T_0))](https://img.qammunity.org/2021/formulas/physics/high-school/hfg1c8fh72pj8hozjnh7cp1ry9swo83nw5.png)
So, substituting,
![A(180^(\circ)C)=A_0(1+2\cdot 18\cdot 10^(-6)(180-21))=1.00572A_0](https://img.qammunity.org/2021/formulas/physics/high-school/iokij537nesev4veyonfk9loei5l3c36zq.png)
Therefore, if the initial resistance at 21.0°C is
![R_0 = (\rho_0 L_0)/(A_0)=1.70\Omega](https://img.qammunity.org/2021/formulas/physics/high-school/6l4ivi99u3qu9y82tfwfd9y9npgoazwka5.png)
Then the resistance at 180.0°C is:
![R(180^(\circ)C)=(\rho(180)L(180))/(A(180))=((1.970\rho_0)(1.00285L_0))/(1.00572A_0)=1.9644(\rho_0 L_0)/(A_0)=1.9644 R_0=\\=(1.9644)(1.70\Omega)=3.34\Omega](https://img.qammunity.org/2021/formulas/physics/high-school/yplpb2mito6ln93f2g4zfc9dpqp3k8lcvc.png)