Option C:
is the correct answer.
Step-by-step explanation:
The given expression is
![35 g^(2)-2 g h-24 h^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/dm1txoawx37sxkzitbblt4pklz26l7ymq5.png)
We need to determine the factor of the expression.
Now, let us break the given expression into two groups.
Hence, we get,
![35 g^(2)+28 g h-30 g h-24 h^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/nup73tk9lgdady06vtvyy72rjctp4r7lg7.png)
Simplifying, we get,
![\left(35 g^(2)+28 g h\right)+\left(-30 g h-24 h^(2)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qjwhbzsdk64wrhyv2zqbpi65i5yttdimiv.png)
Let us factor out 7g from the term
![\left(35 g^(2)+28 g h\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/1wippcjg6xlz8uy2kkwk58n5lqrwhz79sp.png)
Hence, we have,
![7 g(5 g+4 h)+\left(-30 g h-24 h^(2)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/w99iou3w8cnoxs78euftgsnm6qaxsepcv4.png)
Similarly, let us factor out -6h from the term
![\left(-30 g h-24 h^(2)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3kl05qxeoc5pb9kx2ihggw4ea832dv9azl.png)
Thus, we have,
![7 g(5 g+4 h)-6 h(5 g+4 h)](https://img.qammunity.org/2021/formulas/mathematics/high-school/626p826rf41d8uuefwv3tn0dknm4bie6ks.png)
Now, we shall factor out the term
, we get,
![(7 g-6 h)(5 g+4 h)](https://img.qammunity.org/2021/formulas/mathematics/high-school/502sn9pnggnsg5cyo71e363fllkcea649n.png)
Thus, the factorization of the given expression is
![(7 g-6 h)(5 g+4 h)](https://img.qammunity.org/2021/formulas/mathematics/high-school/502sn9pnggnsg5cyo71e363fllkcea649n.png)
Therefore, Option C is the correct answer.