49.1k views
5 votes
Do y’all the answer?

Do y’all the answer?-example-1
User Usagi
by
3.6k points

1 Answer

1 vote

Length = 12 m and width =
(7)/(2) m.

Solution:

Let the width of the rectangle be w.

Length of the rectangle = 2w + 5

Area of the rectangle given = 42 m²

Area of the rectangle = length × width

length × width = 42

(2w + 5) × w = 42


2w^2+5w=42

Subtract 42 from both sides, we get


2w^2+5w-42=0

Using quadratic formula,


$x=\frac{-b \pm \sqrt{b^(2)-4 a c}}{2 a}

Here,
a=2, b=5, c=-42


$w=\frac{-5 \pm \sqrt{5^(2)-4 \cdot 2(-42)}}{2 \cdot 2}


$w=(-5 \pm √(25+336))/(4)


$w=(-5 \pm √(361))/(4)


$w=(-5 \pm19)/(4)


$w=(-5+19)/(4), w=(-5-19)/(4)


$w=(14)/(4), w=(-24)/(4)


$w=(7)/(2), w=-6

Dimension cannot be in negative, so neglect w = –6.

Width of the rectangle =
(7)/(2) m


$L=2((7)/(2) )+5=12 \ m

Hence length = 12 m and width =
(7)/(2) m.

User CeKup
by
3.4k points