153k views
1 vote
Helpppppppppppppppppp

Helpppppppppppppppppp-example-1
User Stepozer
by
4.0k points

1 Answer

6 votes

Option C:


\left(7 x^(2) y^(3)\right)\left(3 x^(5) y^(8)\right)=21 x^(7) y^(11)

Solution:

Given expression is
\left(7 x^(2) y^(3)\right)\left(3 x^(5) y^(8)\right).

To find the product of the above expression.


\left(7 x^(2) y^(3)\right)\left(3 x^(5) y^(8)\right)

First multiply the numerical coefficients.


\left(7 x^(2) y^(3)\right)\left(3 x^(5) y^(8)\right)=21 x^(2) y^(3) x^(5) y^(8)

Arrange the terms with same base.


=21 x^(2) x^(5) y^(3) y^(8)

Using exponent rule:
a^m \cdot a^n = a^(m+n)


=21 x^(2+5) y^(3+8)


=21 x^(7) y^(11)


\left(7 x^(2) y^(3)\right)\left(3 x^(5) y^(8)\right)=21 x^(7) y^(11)

Hence option C is the correct answer.

User Dukethrash
by
4.3k points