Answer:
(a) The value of P (X = 7) is 0.1388.
(b) The value of P (X ≥ 3) is 0.9380.
(c) The value of P (2 < X < 7) is 0.5433.
(d)

(e)

Explanation:
Let X = number of uranium fission tracks on per cm² surface area of the mineral.
The average number of track per cm² surface area is, λ = 6.
The random variable X follows a Poisson distribution with parameter λ = 6.
The probability mass function of a Poisson distribution is:

(a)
Compute the value of P (X = 7) as follows:

Thus, the value of P (X = 7) is 0.1388.
(b)
Compute the value of P (X ≥ 3) as follows:
P (X ≥ 3) = 1 - P (X < 3)
= 1 - P (X = 0) - P (X = 1) - P (X = 2)

Thus, the value of P (X ≥ 3) is 0.9380.
(c)
Compute the value of P (2 < X < 7) as follows:
P (2 < X < 7) = P (X = 3) + P (X = 4) + P (X = 5) + P (X = 6)

Thus, the value of P (2 < X < 7) is 0.5433.
(d)
The mean of the Poisson distribution is:

(e)
The standard deviation of the Poisson distribution is:
