Final answer:
All points on a rotating wheel share the same instantaneous angular velocity; however, points farther from the axis will experience greater centripetal acceleration. The correct statement is that both points have the same instantaneous angular velocity.
Step-by-step explanation:
The question concerns the properties of points located at different radii of a rotating wheel, specifically relating to angular velocity, centripetal acceleration, and tangential acceleration. We can address the situation by considering the principles of circular motion. When a rigid wheel is rotating about a fixed axis, all points on the wheel have the same instantaneous angular velocity since every point on the wheel rotates through the same angle in the same amount of time.
Centripetal acceleration is proportional to the radius and the square of the angular velocity. Since point A, being at the rim, is farther from the axis than point B, point A experiences a greater centripetal acceleration. On the other hand, tangential acceleration is related to the angular acceleration and the radius. If the wheel is rotating with decreasing angular velocity, both point A and B experience the same tangential acceleration because it is a property of the wheel's rotation, not the points' individual locations.
The correct statement in this scenario is that both points have the same instantaneous angular velocity, which makes option 4 the true statement.