Answer:
The magnitude of the net electric field is
![6.57*10^(5)\ N/C](https://img.qammunity.org/2021/formulas/physics/college/fhw2deukxgs2x139v75m74k7n4nfkc0t0i.png)
Step-by-step explanation:
Given that,
Charge density
![\lambda = 4.54\ \mu C/m](https://img.qammunity.org/2021/formulas/physics/college/xr7h4v87x5m301jt27a98kxfts9zvkzbbn.png)
Charge density
![\lambda' = -2.58\ \mu C/m](https://img.qammunity.org/2021/formulas/physics/college/mk3502ozshs0r7tpsdis4r1thrts7sp7bg.png)
Distance
![y_(1)= 0.384\ m](https://img.qammunity.org/2021/formulas/physics/college/q5d9clmyjeb253amafcz5m9gijb065h14o.png)
Distance
![y_(2)= 0.204\ m](https://img.qammunity.org/2021/formulas/physics/college/6utqewzjxpsh38030yq5okxdtiuixd5rqz.png)
We need to calculate the magnitude of the net electric field
Using formula of electric field
![E=E_(1)+E_(2)](https://img.qammunity.org/2021/formulas/physics/college/w1lf2a5zwe3l6iuf973diiwrau6wwdgo5u.png)
![E=(1)/(2\pi\epsilon_(0))((\lambda)/(r)+(\lambda')/(r'))](https://img.qammunity.org/2021/formulas/physics/college/sd7vf1xpujthg8rbsq0nrnbtb5fl7vqkq8.png)
Put the value into the formula
![E=(1)/(2\pi*8.85*10^(-12))((4.54*10^(-6))/(0.204)+(2.58*10^(-6))/(0.384-0.204))](https://img.qammunity.org/2021/formulas/physics/college/e45hhjmv1wvz91eam8fdwj7rsm4jr9998c.png)
![E=6.57*10^(5)\ N/C](https://img.qammunity.org/2021/formulas/physics/college/ihhe8olq9ebjldm2ugee6q2nuj3rdbljql.png)
Hence, The magnitude of the net electric field is
![6.57*10^(5)\ N/C](https://img.qammunity.org/2021/formulas/physics/college/fhw2deukxgs2x139v75m74k7n4nfkc0t0i.png)