219k views
2 votes
What is the expansion of (3+x)^4

User Sanchit
by
3.6k points

1 Answer

4 votes

Answer:


\left(3+x\right)^4:\quad x^4+12x^3+54x^2+108x+81

Explanation:

Considering the expression


\left(3+x\right)^4

Lets determine the expansion of the expression


\left(3+x\right)^4


\mathrm{Apply\:binomial\:theorem}:\quad \left(a+b\right)^n=\sum _(i=0)^n\binom{n}{i}a^(\left(n-i\right))b^i


a=3,\:\:b=x


=\sum _(i=0)^4\binom{4}{i}\cdot \:3^(\left(4-i\right))x^i

Expanding summation


\binom{n}{i}=(n!)/(i!\left(n-i\right)!)


i=0\quad :\quad (4!)/(0!\left(4-0\right)!)3^4x^0


i=1\quad :\quad (4!)/(1!\left(4-1\right)!)3^3x^1


i=2\quad :\quad (4!)/(2!\left(4-2\right)!)3^2x^2


i=3\quad :\quad (4!)/(3!\left(4-3\right)!)3^1x^3


i=4\quad :\quad (4!)/(4!\left(4-4\right)!)3^0x^4


=(4!)/(0!\left(4-0\right)!)\cdot \:3^4x^0+(4!)/(1!\left(4-1\right)!)\cdot \:3^3x^1+(4!)/(2!\left(4-2\right)!)\cdot \:3^2x^2+(4!)/(3!\left(4-3\right)!)\cdot \:3^1x^3+(4!)/(4!\left(4-4\right)!)\cdot \:3^0x^4


=(4!)/(0!\left(4-0\right)!)\cdot \:3^4x^0+(4!)/(1!\left(4-1\right)!)\cdot \:3^3x^1+(4!)/(2!\left(4-2\right)!)\cdot \:3^2x^2+(4!)/(3!\left(4-3\right)!)\cdot \:3^1x^3+(4!)/(4!\left(4-4\right)!)\cdot \:3^0x^4

as


(4!)/(0!\left(4-0\right)!)\cdot \:\:3^4x^0:\:\:\:\:\:\:81


(4!)/(1!\left(4-1\right)!)\cdot \:3^3x^1:\quad 108x


(4!)/(2!\left(4-2\right)!)\cdot \:3^2x^2:\quad 54x^2


(4!)/(3!\left(4-3\right)!)\cdot \:3^1x^3:\quad 12x^3


(4!)/(4!\left(4-4\right)!)\cdot \:3^0x^4:\quad x^4

so equation becomes


=81+108x+54x^2+12x^3+x^4


=x^4+12x^3+54x^2+108x+81

Therefore,


  • \left(3+x\right)^4:\quad x^4+12x^3+54x^2+108x+81
User IssamTP
by
4.2k points