Answer:
Explanation:
A(5,0),B(4,2), C(1,3),D(-2,2),E(-3,-1),F(0-4)
we divide the hexagon in triangles and trapeziums
area Δ BCD (with coordinates B(4,2),C(1,3),D(-2,2)) =1/2(2+4)×2=6
area Δ DEG (with coordinates D(-2,2),E(-3,-1),G(-2.-2))=1/2(2+2)×2=4
area ΔAOF(with coordinates A(5,0),O(0,0),F(0,-4))=1/2×5×4=10
area trapezium ABDH (with coordinates A(5,0),B(4,2),D(-2,2),H(-2,0))=1/2[(2+5)+(2+4)]×2=13
area trapezium OHGF (with coordinates O(0,0),H(-2,0),G(-2,-2),F(0,-4))=1/2[4+2]×2=6
Total area=6+4+10+13+6=39 sq units.