21.7k views
1 vote
Prove that :
1/sin^2A -1/tan^2A =1​

Prove that : 1/sin^2A -1/tan^2A =1​-example-1

1 Answer

3 votes

To prove that:


$(1)/(\sin ^(2)A)-(1)/(\tan ^(2)A)=1

LHS =
(1)/(\sin ^(2)A)-(1)/(\tan ^(2)A)

Using basic trigonometric identity,
\tan (x)=(\sin (x))/(\cos (x))


$=(1)/(\sin ^(2)A)-(1)/(\left((\sin A)/(\cos A)\right)^(2))


$=(1)/(\sin ^(2)A)-(1)/((\sin^2A)/(\cos^2 A))


$=(1)/(\sin ^(2)A)-(\cos^2 A)/(\sin^2A)


$=\frac{1-{\cos^2 A}}{\sin ^(2)A}

Using trigonometric identity:
1-\cos ^(2)(x)=\sin ^(2)(x)


$=(\sin ^(2)A)/(\sin ^(2)A)

= 1

= RHS

LHS = RHS


$(1)/(\sin ^(2)A)-(1)/(\tan ^(2)A)=1

Hence proved.

User Isxpjm
by
8.3k points