129k views
4 votes
Find the value of the given function's derivative at x=3

f(x)=k(g(x))
g(x)=2x-x^2
k'(-3)=2
f'(3)=[]

Find the value of the given function's derivative at x=3 f(x)=k(g(x)) g(x)=2x-x^2 k-example-1
User Ziriax
by
7.3k points

1 Answer

3 votes

Step-by-step explanation:

According to the chain rule, if we have a function:


f(x)=k(g(x))

The derivative at a point
a will be:


f'(a)=k'(g(a))g'(a)

We know that:


f'(3)=k'(g(3))g'(3)\\ \\ \\ a=3 \\ \\ \\ Then: \\ \\ g(3)=2(3)-3^2 \\ \\ g(3)=6-9 \\ \\ g(3)=-3 \\ \\ \\ k'(g(3))=k'(-3)=2 \\ \\ \\ g'(x)=2-2x \\ \\ g'(3)=2-2(3)=-4 \\ \\ \\ Finally: \\ \\ f'(3)=2(-4) \\ \\ \boxed{f'(3)=-8}

User Slaurent
by
7.5k points