98.1k views
2 votes
Solve for X
1. - 6x + 14 < =28 OR
9x + 15 <-12

User Siriscac
by
4.2k points

1 Answer

1 vote

Solution:

1)


-6x + 14\leq 28

Solve the inequality for "x"

From given,


-6x + 14\leq 28


\mathrm{Subtract\:}14\mathrm{\:from\:both\:sides}\\\\-6x+14-14\le \:28-14\\\\Simplify\\\\-6x\le \:14\\\\\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}

When, we multiply or divide both sides of inequality by negative number, then we must flip the inequality sign


\left(-6x\right)\left(-1\right)\ge \:14\left(-1\right)\\\\\mathrm{Simplify}\\\\6x\ge \:-14\\\\\mathrm{Divide\:both\:sides\:by\:}6\\\\(6x)/(6)\ge (-14)/(6)\\\\x \geq -2.333

The solution set is given as:


-6x+14\le \:28\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:x\ge \:-(7)/(3)\:\\ \:\mathrm{Decimal:}&amp;\:x\ge \:-2.33333\dots \\ \:\mathrm{Interval\:Notation:}&amp;\:[-(7)/(3),\:\infty \:)\end{bmatrix}

---------------------------------------------------------------------------------------------------

2)


9x + 15< - 12

Solve the inequality for "x"

From given,


9x+15<-12\\\\\mathrm{Subtract\:}15\mathrm{\:from\:both\:sides}\\\\9x+15-15<-12-15\\\\\mathrm{Simplify}\\\\9x<-27\\\\\mathrm{Divide\:both\:sides\:by\:}9\\\\(9x)/(9)<(-27)/(9)\\\\\mathrm{Simplify}\\\\x < -3

The solution set is given as:


9x+15<-12\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:x<-3\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:-3\right)\end{bmatrix}

User BentFX
by
4.0k points