98.1k views
2 votes
Solve for X
1. - 6x + 14 < =28 OR
9x + 15 <-12

User Siriscac
by
7.7k points

1 Answer

1 vote

Solution:

1)


-6x + 14\leq 28

Solve the inequality for "x"

From given,


-6x + 14\leq 28


\mathrm{Subtract\:}14\mathrm{\:from\:both\:sides}\\\\-6x+14-14\le \:28-14\\\\Simplify\\\\-6x\le \:14\\\\\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}

When, we multiply or divide both sides of inequality by negative number, then we must flip the inequality sign


\left(-6x\right)\left(-1\right)\ge \:14\left(-1\right)\\\\\mathrm{Simplify}\\\\6x\ge \:-14\\\\\mathrm{Divide\:both\:sides\:by\:}6\\\\(6x)/(6)\ge (-14)/(6)\\\\x \geq -2.333

The solution set is given as:


-6x+14\le \:28\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:x\ge \:-(7)/(3)\:\\ \:\mathrm{Decimal:}&amp;\:x\ge \:-2.33333\dots \\ \:\mathrm{Interval\:Notation:}&amp;\:[-(7)/(3),\:\infty \:)\end{bmatrix}

---------------------------------------------------------------------------------------------------

2)


9x + 15< - 12

Solve the inequality for "x"

From given,


9x+15<-12\\\\\mathrm{Subtract\:}15\mathrm{\:from\:both\:sides}\\\\9x+15-15<-12-15\\\\\mathrm{Simplify}\\\\9x<-27\\\\\mathrm{Divide\:both\:sides\:by\:}9\\\\(9x)/(9)<(-27)/(9)\\\\\mathrm{Simplify}\\\\x < -3

The solution set is given as:


9x+15<-12\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:x<-3\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:-3\right)\end{bmatrix}

User BentFX
by
7.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories