Answer:
See below ↓
Explanation:
Finding w and x [both are equal]
- Take the cos function of one of the 45° angles, which is the ratio of the adjacent side to the hypotenuse
- cos(45°) =
![(1)/(√(2) ) = (w)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/nyvcjvnojktmavii5vw2jpitws9m8mip6v.png)
- ⇒ w =
![(6)/(√(2) ) = (6)/(√(2) ) *(√(2) )/(√(2) ) = (6√(2) )/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/hxxxdzss6vwqn12tc9kge1b245k08eyeh1.png)
- ⇒ w = 3√2 and x = 3√2
Finding y
- Take the cos ratio of the 60° angle to find y
- cos(60°) =
![(1)/(2) = (y)/(x) = (y)/(3√(2) )](https://img.qammunity.org/2023/formulas/mathematics/college/e81u8iwvoa808dbtsaq02tpwca83srfcya.png)
- ⇒ y =
![(3√(2) )/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/7fses1s0e6r1k7hd4q8rmqsugdp7mgok4d.png)
Finding z
- Take the sin ratio of 60° angle of the triangle, which is the ratio of the opposite side to the hypotenuse
- sin(60°) =
![(√(3) )/(2)= (z)/(x) = (z)/(3√(2) )](https://img.qammunity.org/2023/formulas/mathematics/college/ckqy3nhr75ij3rq6vyops0z76r6qt4d1ml.png)
- ⇒ z =
![(3√(6) )/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/yqzlp6e5ex520tzy20w1rdzmycpm05ag2o.png)