The question is incomplete.
The complete question is:
A student with a mass of m rides a roller coaster with a loop with a radius of curvature of r. What is the minimum speed the rollercoaster can maintain and still make it all the way around the loop? g= 9.8m/s
r=5.5 m= 55kg
Answer: 7.3m/s
Step-by-step explanation:
Centripetal force is the force acting on a body causing circular motion towards the center which allows to keep the body on track or right path. Any combination of forces in nature can cause centripetal acceleration in various systems.
Where:
V is the tangential velocity
W is the angular velocity
M is the Mass in kg
g is the gravitational force
r is the circular radius
Apply Newton's second law of motion.
The minimum speed is also known as the critical speed is the point where the tension, frictional or normal force is zero and the only thing keeping the object in circular motion is the force of gravity.
This is explained as follows:
N + mg = mw^2r
mg = mv^2/r
Therefore,the minimum speed is:
v^2 = gr
v = square root(gr)
= sqrt(9.8N/kg)(5.5m)
=(9.8N/kg)(5.5m) ^1/2
v = 7.3m/s