Answer:
Step-by-step explanation:
Energy Conversions
This is an example where the mechanical energy is not conserved since an external force is acting and distorting the original balance between kinetic and potential gravitational energy.
Let's start with the first event, the particle being thrown upwards with an initial speed vo. The initial mechanical energy at zero height is only kinetic:
When the particle reaches its maximum height, the mechanical energy is only potential gravitational:
M'=mgh
Equating both:
Simplifying by m and solving for h
The particle is then given a positive charge and we know it reaches the same maximum height when the initial speed is 28.8 m/s. The initial kinetic energy was not totally converted to potential gravitational energy. The charge that was given to the particle and the electric potential present changed the energy balance by introducing a new member into the equation. The final energy at maximum height is
Where U is the electric energy the particle has when reached the maximum height. Equating the initial and final energies we have
Simplifying by m and solving for U
This energy makes the particle have an additional force downwards that brakes it until it stops. When the charge is negative, the new electrical force will be directed upwards in such a way that the particle will reach the same maximum height with less initial speed v''o. The new equilibrium equation will be
Simplifying by m and solving for v''o