Given Information :-
⠀
A cone with dimensions :-
- Radius = 3 cm
- Slant height ( l ) = 7 cm
⠀
Another cone with dimensions :-
⠀
- Radius = 5 cm
- Slant height = 9 cm
⠀
To Find :-
⠀
- The ratio of their total surface area
⠀
Formula Used :-
⠀
![\qquad \diamond \: \underline{ \boxed{ \red{ \sf T.S.A._(Cone)= \pi r(r+l) }}} \: \star](https://img.qammunity.org/2023/formulas/mathematics/college/o5x0ecuy5wh29guhhv0lbdbmo2mka0p14g.png)
⠀
Solution :-
⠀
For the first cone,
⠀
Since, we don't really have to find the exact values of the surface area, we will let pi remain as a sign itself, this will make the calculations easier.
⠀
![\sf \longrightarrow T.S.A. = \pi * 3(3 + 7) \\ \\ \\ \sf \longrightarrow T.S.A. = \pi * 3 * 10 \: \: \: \\ \\ \\ \sf \longrightarrow T.S.A. =30 \pi \: {cm}^(2) \: \: \: \: \: \: \: \: \\ \\](https://img.qammunity.org/2023/formulas/mathematics/college/l4b5yl05q5nwp7jrblrlvggpuwefopwwv0.png)
Now, for the second cone,
⠀
![\sf \longrightarrow T.S.A. = \pi * 5(5 + 9) \\ \\ \\ \sf \longrightarrow T.S.A. = \pi * 5 * 14 \: \: \: \: \\ \\ \\ \sf \longrightarrow T.S.A. =70 \pi \: {cm}^(2) \: \: \: \: \: \: \: \: \: \\ \\](https://img.qammunity.org/2023/formulas/mathematics/college/h4rz3x0ap5wtf4jc27pm8lldzjvkwq1cpl.png)
Now, we just have to calculate the ratio of their surface areas, thus,
⠀
![\sf \longrightarrow Ratio = (Surface ~area~of~first~cone)/(Surface ~area~of~second~cone) \\ \\ \\ \sf \longrightarrow Ratio = \frac{30 \pi \: {cm}^(2) }{70 \pi \: {cm}^(2) } \: \: \: \: \: \: \: \: \: \qquad \qquad \qquad \\ \\ \\ \sf \longrightarrow Ratio = \frac{ 3 \cancel{0 \pi \: {cm}^(2)} }{ 7 \cancel{0 \pi \: {cm}^(2) } } \qquad \qquad \qquad \qquad \\ \\ \\\sf \longrightarrow Ratio = (3)/(7) = 3 : 7 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\](https://img.qammunity.org/2023/formulas/mathematics/college/qyh5601eyck67nxao28bsnaj1akqst98py.png)
Thus, the ratio between the surface areas of the cones is 3 : 7.
⠀
![\underline{ \rule{227pt}{2pt}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/vzqndg86vuj1rz1nbogq5gni97q5uchpga.png)