72.7k views
13 votes
Evaluate
(1)/(2^(-2)x^(-3)y^(5) ) for x=2 and y=-4.

A)-16
b)-4
c)
-(1)/(32)
d)16

2 Answers

9 votes


\frac 1{2^(-2)\cdot x^(-3)\cdot y^5}\\\\=\frac 1{2^(-2) \cdot2^(-3) \cdot (-4)^5}\\\\=-\frac 1{2^(-2) \cdot 2^(-3) \cdot (2^2)^5}\\\\=-(1)/(2^(-2) \cdot 2^(-3) \cdot 2^(10))\\\\=-(1)/(2^(-2-3+10))\\\\=-\frac 1{2^(5)}\\\\=-\frac 1{32}

User Sebastian Castano
by
8.0k points
10 votes

Answer:


\bf C)\: -\cfrac{1}{32}

Explanation:


\tt \cfrac{1}{2^(-2)x^(-3)y^5}


\tt x=2\\y=-4

~

Substitute ''x'' with '2' & 'y' with "-4":-


\tt \cfrac{1}{2^(-2)* \:2^(-3)\left(-4\right)^5}

First let's solve
\tt 2^(-2)* \:\:2^(-3)\left(-4\right)^5


\tt 2^(-2)* \:2^(-3)=\boxed{\cfrac{1}{32} }


\tt \cfrac{1}{32}\left(-4\right)^5

Calculate exponents:- -4^5= -1024


\tt \cfrac{1}{32}\left(-1024\right)

Remove parentheses, apply rule:-
\tt a\left(-b\right)=-ab


\tt-(1)/(32)* \:1024


\tt \cfrac{1}{32}* \cfrac{1024}{1}

Apply fraction rule:-


\tt -\cfrac{1* \:1024}{32* \:1}


\tt \cfrac{1024}{32}

Divide numbers:-


\tt -32

Now that we're done factoring the denominator let's bring down the numerator which is ' 1 ':-


\tt -\cfrac{1}{32}\;\; \bf Answer

☆-------☆-------☆-------☆

User Shish
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories