134k views
18 votes
Work out the size of one of the exterior angles

Work out the size of one of the exterior angles-example-1
User Terrian
by
8.3k points

2 Answers

12 votes

Given Information :-

  • A polygon with 10 sides ( Decagon )

To Find :-

  • The value of one of the exterior angles

Formula Used :-


\qquad \diamond \: \underline{ \boxed{ \pink{ \sf Exterior ~angle = \frac {360^\circ}{no. ~of~sides}}}} \: \star

Solution :-

Putting the given values, we get,


\sf \dashrightarrow Exterior ~angle = (360 ^\circ)/(10) \: \: \\ \\ \\ \sf \dashrightarrow Exterior ~angle = \frac{36 \cancel{0}^\circ}{ \cancel{10}} \: \: \\ \\ \\ \sf \dashrightarrow Exterior ~angle = \underline{ \boxed{ \frak{ \red{36^\circ}}}} \: \star \\ \\

Thus, the value of the exterior angles of a Decagon is 36°.


\underline{ \rule{227pt}{2pt}} \\ \\

User Jaay
by
8.3k points
11 votes

Answer:

  • 36° .

Explanation :

For a regular polygon of n sides, we have


{ \longrightarrow \qquad \pmb{ \it{Each \: exterior \: angle = { \bigg( {(360)/(n) } \bigg)^( \circ) }}}}

Here, We are to find the measure of each exterior angle of a regular decagon.

  • So, we know a regular decagon has 10 sides, so n = 10 .

Now, substituting the value :


\sf \longrightarrow \qquad Each \: exterior \: angle_((Decagon)) = { \bigg( {(360)/(10) } \bigg)}^( \circ)


\sf \longrightarrow \qquad Each \: exterior \: angle _((Decagon))= { \bigg( {(36 \cancel0)/(1 \cancel0) } \bigg)}^( \circ)


\sf \longrightarrow \qquad Each \: exterior \: angle_((Decagon)) = { \bigg( {(36)/(1) } \bigg)}^( \circ)


{\pmb{ \frak{ \longrightarrow \qquad Each \: exterior \: angle_((Decagon)) = 36^( \circ) }}}

Therefore,

  • The measure of each exterior angle of a regular decagon is 36° .
User Zabs
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories