134k views
18 votes
Work out the size of one of the exterior angles

Work out the size of one of the exterior angles-example-1
User Terrian
by
3.9k points

2 Answers

12 votes

Given Information :-

  • A polygon with 10 sides ( Decagon )

To Find :-

  • The value of one of the exterior angles

Formula Used :-


\qquad \diamond \: \underline{ \boxed{ \pink{ \sf Exterior ~angle = \frac {360^\circ}{no. ~of~sides}}}} \: \star

Solution :-

Putting the given values, we get,


\sf \dashrightarrow Exterior ~angle = (360 ^\circ)/(10) \: \: \\ \\ \\ \sf \dashrightarrow Exterior ~angle = \frac{36 \cancel{0}^\circ}{ \cancel{10}} \: \: \\ \\ \\ \sf \dashrightarrow Exterior ~angle = \underline{ \boxed{ \frak{ \red{36^\circ}}}} \: \star \\ \\

Thus, the value of the exterior angles of a Decagon is 36°.


\underline{ \rule{227pt}{2pt}} \\ \\

User Jaay
by
3.6k points
11 votes

Answer:

  • 36° .

Explanation :

For a regular polygon of n sides, we have


{ \longrightarrow \qquad \pmb{ \it{Each \: exterior \: angle = { \bigg( {(360)/(n) } \bigg)^( \circ) }}}}

Here, We are to find the measure of each exterior angle of a regular decagon.

  • So, we know a regular decagon has 10 sides, so n = 10 .

Now, substituting the value :


\sf \longrightarrow \qquad Each \: exterior \: angle_((Decagon)) = { \bigg( {(360)/(10) } \bigg)}^( \circ)


\sf \longrightarrow \qquad Each \: exterior \: angle _((Decagon))= { \bigg( {(36 \cancel0)/(1 \cancel0) } \bigg)}^( \circ)


\sf \longrightarrow \qquad Each \: exterior \: angle_((Decagon)) = { \bigg( {(36)/(1) } \bigg)}^( \circ)


{\pmb{ \frak{ \longrightarrow \qquad Each \: exterior \: angle_((Decagon)) = 36^( \circ) }}}

Therefore,

  • The measure of each exterior angle of a regular decagon is 36° .
User Zabs
by
3.8k points