Answer:
⠀
Explanation :
⠀
For a regular polygon of n sides, we have
![{ \longrightarrow \qquad \pmb{ \it{Each \: exterior \: angle = { \bigg( {(360)/(n) } \bigg)^( \circ) }}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cglyn0afu1mug3t1ojsfi7fmgep2iqevk5.png)
⠀
Here, We are to find the measure of each exterior angle of a regular decagon.
⠀
- So, we know a regular decagon has 10 sides, so n = 10 .
⠀
Now, substituting the value :
⠀
![\sf \longrightarrow \qquad Each \: exterior \: angle_((Decagon)) = { \bigg( {(360)/(10) } \bigg)}^( \circ)](https://img.qammunity.org/2023/formulas/mathematics/high-school/y4wakicccm0u2vq0o1o72jt6x89pccka7y.png)
⠀
![\sf \longrightarrow \qquad Each \: exterior \: angle _((Decagon))= { \bigg( {(36 \cancel0)/(1 \cancel0) } \bigg)}^( \circ)](https://img.qammunity.org/2023/formulas/mathematics/high-school/koq2osesycaf6onv2haj0jczej8xqpbhzh.png)
⠀
![\sf \longrightarrow \qquad Each \: exterior \: angle_((Decagon)) = { \bigg( {(36)/(1) } \bigg)}^( \circ)](https://img.qammunity.org/2023/formulas/mathematics/high-school/awc2jiaz4xtas3e0o4xw79vntn1i9h8gse.png)
⠀
![{\pmb{ \frak{ \longrightarrow \qquad Each \: exterior \: angle_((Decagon)) = 36^( \circ) }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ix1cn9g9l3qcxehxofd8ccr4s1qw3x1twv.png)
⠀
Therefore,
- The measure of each exterior angle of a regular decagon is 36° .