60.2k views
3 votes
If u(x)=-2x2+3 and v(x)=1/x, what is the range of (u

User ThanhHH
by
4.9k points

1 Answer

5 votes

Answer:

As the function contains horizontal asymptote y = 3.

Therefore,


\mathrm{Range\:of\:}(3x^2-2)/(x^2):\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:f\left(x\right)<3\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:3\right)\end{bmatrix}

Explanation:

Considering


u\left(x\right)=-2x^3+3


v\left(x\right)=(1)/(x)

We have to determine the range of
\left(u\cdot v\right)\left(x\right)

as


\left(u\circ \:v\right)\left(x\right)=u\left(v\left(x\right)\right)


\:\left(u\circ \:v\right)\left(x\right)=u\left(v\left(x\right)\right)=u\left((1)/(x)\right)


u\left((1)/(x)\right)=-(2)/(x^3)+3


u\left((1)/(x)\right)=(3x^2-2)/(x^2)

As the function contains horizontal asymptote y = 3.

Therefore,


\mathrm{Range\:of\:}(3x^2-2)/(x^2):\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:f\left(x\right)<3\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:3\right)\end{bmatrix}

User Idclark
by
4.2k points