Given Information :-
⠀
- Each exterior angle of a regular polygon has a measure of 40°
⠀
To Find :-
⠀
- The number of sides of the polygon
⠀
Formula Used :-
⠀
![\qquad \star \: \underline{ \boxed{ \green{ \sf No.~of~sides = (360^ \circ)/(exterior ~angle)}}} \: \star](https://img.qammunity.org/2023/formulas/mathematics/college/1iklxk9nnek5yuukc1y0h5gkl7ejv0vhh6.png)
⠀
Solution :-
⠀
Using the formula,
⠀
![\sf \dashrightarrow No. ~of~sides= (360)/(40) \\ \\ \\ \sf \dashrightarrow No. ~of~sides= \frac{ \cancel{360}}{ \cancel{40} } \\ \\ \\ \sf \dashrightarrow No. ~of~sides= \underline{ \boxed{ \blue { \frak{9}}}} \: \star](https://img.qammunity.org/2023/formulas/mathematics/college/rf4sldfun8bguszgaxqdeu7jrhowaqxyuo.png)
⠀
Thus, the polygon is a nonagon, and hence has 9 sides.
⠀
![\underline{\rule{227pt}{2pt}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/college/6oaz51idjq3vkjdqnsgzn73h98bt1g08lm.png)