8.9k views
3 votes
Use Lagrange multipliers to find the dimensions of the box with volume 1728 cm3 that has minimal surface area. (Enter the dimensions (in centimeters) as a comma separated list.)

User Jed Lynch
by
4.4k points

1 Answer

2 votes

Answer:

(x,y,z) = (12,12,12) cm

Explanation:

The box is assumed to be a closed box.

The surface area of a box of dimension x, y and z is given by

S = 2xy + 2xz + 2yz

We're to minimize this function subject to the constraint that

xyz = 1728

The constraint can be rewritten as

xyz - 1728 = 0

Using Lagrange multiplier, we then write the equation in Lagrange form

Lagrange function = Function - λ(constraint)

where λ = Lagrange factor, which can be a function of x, y and z

L(x,y,z) = 2xy + 2xz + 2yz - λ(xyz - 1728)

We then take the partial derivatives of the Lagrange function with respect to x, y, z and λ. Because these are turning points, each of the partial derivatives is equal to 0.

(∂L/∂x) = 2y + 2z - λyz = 0

λ = (2y + 2z)/yz = (2/z) + (2/y)

(∂L/∂y) = 2x + 2z - λxz = 0

λ = (2x + 2z)/xz = (2/z) + (2/x)

(∂L/∂z) = 2x + 2y - λxy = 0

λ = (2x + 2y)/xy = (2/y) + (2/x)

(∂L/∂λ) = xyz - 1728 = 0

We can then equate the values of λ from the first 3 partial derivatives and solve for the values of x, y and z

(2/z) + (2/y) = (2/z) + (2/x)

(2/y) = (2/x)

y = x

Also,

(2/z) + (2/x) = (2/y) + (2/x)

(2/z) = (2/y)

z = y

Hence, at the point where the box has minimal area,

x = y = z

Putting these into the constraint equation or the solution of the fourth partial derivative,

xyz - 1728 = 0

x³ = 1728

x = 12 cm

x = y = z = 12 cm.

User Unexpectedvalue
by
4.6k points