68.0k views
3 votes
Calculate the amount of heat required to convert 10.0 grams of ice at –20.°C to steam at 120.°C. (Sp. heat of H2O(s) = 2.09 J/g•°C, Sp. heat of H2O(l) = 4.18 J/g•°C, Sp heat of H2O(g) = 2.03 J/g•°C; heat of fus. of H2O(s) = 333 J/g, heat of vap. of H2O(l) = 2260 J/g).

1 Answer

3 votes

Answer : The amount of heat required is,
3.09* 10^4J

Solution :

The process involved in this problem are :


(1):H_2O(s)(-20^oC)\rightarrow H_2O(s)(0^oC)\\\\(2):H_2O(s)(0^oC)\rightarrow H_2O(l)(0^oC)\\\\(3):H_2O(l)(0^oC)\rightarrow H_2O(l)(100^oC)\\\\(4):H_2O(l)(100^oC)\rightarrow H_2O(g)(100^oC)\\\\(5):H_2O(g)(100^oC)\rightarrow H_2O(g)(120^oC)

The expression used will be:


\Delta H=[m* c_(p,s)* (T_(final)-T_(initial))]+m* \Delta H_(fusion)+[m* c_(p,l)* (T_(final)-T_(initial))]+m* \Delta H_(vap)+[m* c_(p,g)* (T_(final)-T_(initial))]

where,


\Delta H = heat required for the reaction

m = mass of ice = 10.0 g


c_(p,s) = specific heat of solid water or ice =
2.09J/g^oC


c_(p,l) = specific heat of liquid water =
4.18J/g^oC


c_(p,g) = specific heat of gaseous water =
2.03J/g^oC


\Delta H_(fusion) = enthalpy change for fusion =
333J/g


\Delta H_(vap) = enthalpy change for vaporization =
2260J/g

Now put all the given values in the above expression, we get:


\Delta H=[10.0g* 2.09J/g^oC* (0-(-20))^oC]+10.0g* 333J/g+[10.0g* 4.18J/g^oC* (100-0)^oC]+10.0g* 2260J/g+[10.0g* 2.03J/g^oC* (120-100)^oC]


\Delta H=30934J=3.09* 10^4J

Therefore, the amount of heat required is,
3.09* 10^4J

User Brig Ader
by
4.4k points