183k views
2 votes
Convert the Cartesian coordinate (6,-3) to polar coordinates, 0≤θ<2π, r>0

User Orsy
by
4.3k points

1 Answer

4 votes

Answer:

The polar coordinates is (3√5 , 333.4°) OR (3√5 , 5.82 rad)

Explanation:

The polar form of the Cartesian coordinates (x , y) is (r , Ф), where


  • r=\sqrt{x^(2)+y^(2)}
  • Ф =
    tan^(-1)((y)/(x))

The Cartesian coordinates is (6 , -3)

That means the point lies in the fourth quadrant because the x-coordinate is positive and the y-coordinate is negative, so Ф will be equal [2π -
tan^(-1)((y)/(x)) ] (neglect the negative sign of y-coordinate)

∵ x = 6 and y = -3

∵ r > 0


r=\sqrt{x^(2)+y^(2)}

- Substitute x and y in the rule of r


r=\sqrt{(6)^(2)+(-3)^(2)}


r=√(36+9)


r=√(45)


r=3√(5)

Now let us find Ф

∵ 0 ≤ Ф < 2π

∴ Ф = 2π -
tan^(-1)((y)/(x))

- Neglect the negative sign of the y-coordinate

∴ Ф = 2π -
tan^(-1)((3)/(6))

∴ Ф = 333.4° OR Ф = 5.82 radiant

The polar coordinates is (3√5 , 333.4°) OR (3√5 , 5.82 rad)

User Airah
by
4.2k points