215k views
1 vote
Verify ((csc^2x) + (2cscx) -3) / ((csc^2x) - 1) = (cscx+3) / (cscx + 1)

1 Answer

4 votes


(cosec^2\ x + 2cosec\ x - 3)/(cosec^2x - 1) = (cosec\ x + 3)/(cosec\ x + 1)

Solution:

Given that, we have to verify


(cosec^2\ x + 2cosec\ x - 3)/(cosec^2x - 1) = (cosec\ x + 3)/(cosec\ x + 1)

Take the LHS


(cosec^2\ x + 2cosec\ x - 3)/(cosec^2x - 1)

Use the following identity, for denominator


a^2 - b^2 = (a+b)(a-b)

Therefore,


(cosec^2\ x + 2cosec\ x - 3)/((cosecx + 1)(cosec\ x - 1))

Numerator can be rewritten as:


((cosec\ x +3)(cosec\ x - 1))/((cosecx + 1)(cosec\ x - 1))

Cancel the common terms


((cosec\ x +3))/((cosecx + 1))

Thus, LHS = RHS

Thus proved

User Silexcorp
by
5.5k points