102k views
1 vote
Answer number 13 please

Answer number 13 please-example-1

1 Answer

4 votes

ΔXYP ≅ ΔZYP by SSS similarity congruence theorem.

Solution:

Given data:


\overline{XZ} \perp \overline{WY} and
\overline{X Y} \cong \overline{Z Y}

To prove
\triangle X Y P \cong \triangle Z Y P:

In ΔXYP and ΔZYP,


\overline {XP} \cong \overline {PZ} (given side)


\overline{X Y} \cong \overline{Z Y} (given side)


\overline{P Y} \cong \overline{P Y} (reflexive property)

Therefore ΔXYP ≅ ΔZYP by SSS similarity congruence theorem.

Hence proved.

User Carlos Mendieta
by
4.1k points