Answer:

Explanation:
Equation of a Circle
A circle of radius r and centered on the point (h,k) can be expressed by the equation

We are given the equation of a circle as

Note we have corrected it by adding the square to the y. Simplify by 3

Complete squares and rearrange:



We can see that, if r=4, then

Or, equivalently

There are two solutions for
:

Keeping the positive solution, as required:
