Answer: See Below
Explanation:
NOTE: You need the Unit Circle to answer these (attached)
5) cos (t) = 1
Where on the Unit Circle does cos = 1?
Answer: at 0π (0°) and all rotations of 2π (360°)
In radians: t = 0π + 2πn
In degrees: t = 0° + 360n
******************************************************************************
![6)\quad sin (t) = (1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hklc3ixcikhkf9jxcvrwmg03a541yci164.png)
Where on the Unit Circle does
Hint: sin is only positive in Quadrants I and II
![\text{Answer: at}\ (\pi)/(6)\ (30^o)\ \text{and at}\ (5\pi)/(6)\ (150^o)\ \text{and all rotations of}\ 2\pi \ (360^o)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/j6sbr8q6nixv1dxjrqhqwll5uuishw06cd.png)
![\text{In radians:}\ t = (\pi)/(6) + 2\pi n \quad \text{and}\quad (5\pi)/(6) + 2\pi n](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6h94tupr8fpj33tyedb56foc8act9l1556.png)
In degrees: t = 30° + 360n and 150° + 360n
******************************************************************************
![7)\quad tan (t) = -\sqrt3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/n3y61triz2hc365uqtropdsy81ubemfsso.png)
Where on the Unit Circle does
![(sin)/(cos) = (-\sqrt3)/(1)\ or\ (\sqrt3)/(-1)\quad \rightarrow \quad (1,-\sqrt3)\ or\ (-1, \sqrt3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g9lu4h0m57mxswzw1o19y6bn8ff96t5dov.png)
Hint: sin and cos are only opposite signs in Quadrants II and IV
![\text{Answer: at}\ (2\pi)/(3)\ (120^o)\ \text{and at}\ (5\pi)/(3)\ (300^o)\ \text{and all rotations of}\ 2\pi \ (360^o)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1nk96cminwz7qflt7rco97y71esnxd6ogn.png)
![\text{In radians:}\ t = (2\pi)/(3) + 2\pi n \quad \text{and}\quad (5\pi)/(3) + 2\pi n](https://img.qammunity.org/2021/formulas/mathematics/middle-school/h3kk0i0sl0dae0addvpeg52lak8pjvgs1p.png)
In degrees: t = 120° + 360n and 300° + 360n