125k views
5 votes
A 45.2-kg person is on a barrel ride at an amusement park. She stands on a platform with her back to the barrel wall. The 3.74-meter diameter barrel spins rapidly in a circle, making a revolution every 1.65 seconds. Determine the net force (in N) acting on her. Use g = 9.8 m/s/s.

User Tom Kerr
by
5.3k points

1 Answer

0 votes

Answer:

  • 1,230N

Step-by-step explanation:

1. Name of the variables:


f:frequency\\\\ \omega:angular\text{ }speed\\\\ a_c:centripetal\text{ }acceleration\\\\ F_c:centripetal\text{ }force\\ \\ m:mass\\ \\ d:diameter\\ \\ r:radius\\ \\ g:gravitational\text{ }acceleration

2. Formulae:


f=\frac{number\text{ }of\text{ }revolutions}{time}


\omega=2\pi f


a_c=\omega^2 r


F_c=m* a_c

3. Solution (calculations)


f=(1)/(1.65s)=0.\overline{60}s^(-1)


\omega=2\pi*0.\overline{60}\approx 3.808rad/s


a_c=(3.808rad/s)^2* (3.74/2m)=27.12m/s^2


F_c=45.2kg*27.12m/s^2=1,225.67N\approx 1,230N

User Boxdog
by
5.3k points