Answer:
(a) P(test+) = 0.0010989
(b) P(no HIV | test+) = 0.9099
Explanation:
The probability of HIV in blood donors is 1 in every 10000, i.e. P(HIV) = 1/10000 = 0.0001
Let us denote a negative test result with test- and a positive test result with test+. The probability that the test results are negative given that the donor is infected with HIV is 1 in every 100 i.e. P(test- | HIV) = 1/100 = 0.01.
The test returns a positive result for donors who are not infected with HIV with a probability of 1/1000 i.e. P(test+ | no HIV) = 0.001.
We can compute the following probabilities:
P(no HIV) = 1 - P(HIV)
= 1 - 0.0001
P(no HIV) = 0.9999
P(test+ | HIV) = 1 - P(test- | HIV)
= 1 - 0.01
P(test+ | HIV) = 0.99
(a) Now, we need to compute the probability that the donor's blood will test positive i.e. P(test+).
P(test+) = P(test+ ∩ HIV) + P(test+ ∩ no HIV)
= P(test+ | HIV)*P(HIV) + P(test+ | no HIV)*P(no HIV)
= (0.99)(0.0001) + (0.001)(0.9999)
= 0.000099 + 0.0009999
P(test+) = 0.0010989
(b) Now, we need to compute the probability that the donor does not have HIV given that the test result is positive i.e. P(no HIV | test+). Using the conditional probability formula:
P(no HIV | test+) = P(no HIV ∩ test+) / P(test+)
= P(test+ | no HIV)*P(no HIV)/ P(test+)
We have found the value of P(test+) in part (a) so,
P(no HIV | test+) = (0.001*0.9999)/0.0010989
= 0.0009999/0.0010989
P(no HIV | test+) = 0.9099