117k views
1 vote
An aqueous solution was prepared at 21 oC by mixing 7.00 mL 2.00 x 10-2mol L-1Fe3+, 2.00 mL 1.50 x 10-3 mol L-1SCN−, and 1.00 mL water. At equilibrium, the concentration of the product complex, [Fe(SCN)2+]eq was determined to be 1.74 x 10-4mol L-1. What is the value of the equilibrium constant K for the reaction of interest at 21 oC?

User Hejdav
by
5.6k points

1 Answer

2 votes

Answer: The value of equilibrium constant for the given reaction is 99.85

Step-by-step explanation:

To calculate the number of moles for given molarity, we use the equation:


\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}} .....(1)

  • For
    Fe^(3+) ions:

Molarity of
Fe^(3+) solution =
2.00* 10^(-2)M

Volume of solution = 7.00 mL = 0.007 L (Conversion factor: 1 L = 1000 mL)

Putting values in equation 1, we get:


2.00* 10^(-2)M=\frac{\text{Moles of }Fe^(3+)\text{ ions}}{0.007L}\\\\\text{Moles of }Fe^(3+)\text{ ions}=(2.00* 10^(-2)mol/L* 0.007L)=1.4* 10^(-4)mol

  • For
    SCN^(-) ions:

Molarity of
SCN^(-) solution =
1.50* 10^(-3)M

Volume of solution = 2.00 mL = 0.002 L

Putting values in equation 1, we get:


1.50* 10^(-3)M=\frac{\text{Moles of }SCN^(-)\text{ ions}}{0.002L}\\\\\text{Moles of }SCN^-\text{ ions}=(1.50* 10^(-3)mol/L* 0.002L)=3* 10^(-6)mol

Volume of the container = [7 + 2 + 1] = 10 mL = 0.010 L


\text{Molarity of }Fe^(3+)\text{ ions}=(1.4* 10^(-4)mol)/(0.01)=1.4* 10^(-2)M


\text{Molarity of }SCN^(-)\text{ ions}=(3.0* 10^(-6)mol)/(0.01)=3.0* 10^(-4)M

The chemical equation for the formation of
[FeSCN^(2+)]complex follows:


Fe^(2+)+SCN^-\rightleftharpoons [FeSCN^(2+)]

Initial: 0.014
3.0* 10^(-4)

At eqllm: 0.014-x
3.0* 10^(-4)-x x

We are given:

Equilibrium concentration of
[FeSCN^(2+)]=1.74* 10^(-4)M=x

Equilibrium concentration of
[Fe^(2+)]\text{ ions}=(1.4* 10^(-2)-x)=(1.4-0.0174)* 10^(-3)=1.383* 10^(-2)M

Equilibrium concentration of
[SCN^(-)]\text{ ions}=(3.0* 10^(-4)-x)=(3.0-1.74)* 10^(-4)=1.26* 10^(-4)M

The expression of
K_(eq) for above equation follows:


K_(eq)=([FeSCN^(2+)])/([Fe^(3+)][SCN^-])

Putting values in above equation, we get:


K_(eq)=((1.74* 10^(-4)))/((1.383* 10^(-2))* (1.26* 10^(-4)))\\\\K_(eq)=99.85

Hence, the value of equilibrium constant for the given reaction is 99.85

User Csakbalint
by
5.0k points