117k views
1 vote
An aqueous solution was prepared at 21 oC by mixing 7.00 mL 2.00 x 10-2mol L-1Fe3+, 2.00 mL 1.50 x 10-3 mol L-1SCN−, and 1.00 mL water. At equilibrium, the concentration of the product complex, [Fe(SCN)2+]eq was determined to be 1.74 x 10-4mol L-1. What is the value of the equilibrium constant K for the reaction of interest at 21 oC?

User Hejdav
by
9.0k points

1 Answer

2 votes

Answer: The value of equilibrium constant for the given reaction is 99.85

Step-by-step explanation:

To calculate the number of moles for given molarity, we use the equation:


\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}} .....(1)

  • For
    Fe^(3+) ions:

Molarity of
Fe^(3+) solution =
2.00* 10^(-2)M

Volume of solution = 7.00 mL = 0.007 L (Conversion factor: 1 L = 1000 mL)

Putting values in equation 1, we get:


2.00* 10^(-2)M=\frac{\text{Moles of }Fe^(3+)\text{ ions}}{0.007L}\\\\\text{Moles of }Fe^(3+)\text{ ions}=(2.00* 10^(-2)mol/L* 0.007L)=1.4* 10^(-4)mol

  • For
    SCN^(-) ions:

Molarity of
SCN^(-) solution =
1.50* 10^(-3)M

Volume of solution = 2.00 mL = 0.002 L

Putting values in equation 1, we get:


1.50* 10^(-3)M=\frac{\text{Moles of }SCN^(-)\text{ ions}}{0.002L}\\\\\text{Moles of }SCN^-\text{ ions}=(1.50* 10^(-3)mol/L* 0.002L)=3* 10^(-6)mol

Volume of the container = [7 + 2 + 1] = 10 mL = 0.010 L


\text{Molarity of }Fe^(3+)\text{ ions}=(1.4* 10^(-4)mol)/(0.01)=1.4* 10^(-2)M


\text{Molarity of }SCN^(-)\text{ ions}=(3.0* 10^(-6)mol)/(0.01)=3.0* 10^(-4)M

The chemical equation for the formation of
[FeSCN^(2+)]complex follows:


Fe^(2+)+SCN^-\rightleftharpoons [FeSCN^(2+)]

Initial: 0.014
3.0* 10^(-4)

At eqllm: 0.014-x
3.0* 10^(-4)-x x

We are given:

Equilibrium concentration of
[FeSCN^(2+)]=1.74* 10^(-4)M=x

Equilibrium concentration of
[Fe^(2+)]\text{ ions}=(1.4* 10^(-2)-x)=(1.4-0.0174)* 10^(-3)=1.383* 10^(-2)M

Equilibrium concentration of
[SCN^(-)]\text{ ions}=(3.0* 10^(-4)-x)=(3.0-1.74)* 10^(-4)=1.26* 10^(-4)M

The expression of
K_(eq) for above equation follows:


K_(eq)=([FeSCN^(2+)])/([Fe^(3+)][SCN^-])

Putting values in above equation, we get:


K_(eq)=((1.74* 10^(-4)))/((1.383* 10^(-2))* (1.26* 10^(-4)))\\\\K_(eq)=99.85

Hence, the value of equilibrium constant for the given reaction is 99.85

User Csakbalint
by
8.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.