The solution is
![21 x^(3)-46 x^(2)+59 x-30](https://img.qammunity.org/2021/formulas/mathematics/high-school/1awsc6766ymhixkkhiqgmg1uo7kwogs8wj.png)
Step-by-step explanation:
The given expression is
![(7 x-6)\left(3 x^(2)-4 x+5\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/swshznd7j03yjbxgztjo5u5jvfq6uvj3xg.png)
We need to multiply and simplify the expression.
Let us multiply each of term within the parenthesis.
Thus, we get,
![7 x \cdot 3 x^(2)+7 x(-4 x)+7 x \cdot 5+(-6) \cdot 3 x^(2)+(-6)(-4 x)+(-6) \cdot 5](https://img.qammunity.org/2021/formulas/mathematics/high-school/dzslfd3tfg0aqc8mf7yz9o9aahya9xgi6g.png)
Now, simplifying each term in the expression, we have,
![21x^3-28x^2+35x-18x^(2) +24x-30](https://img.qammunity.org/2021/formulas/mathematics/high-school/czgt57ocyy9fkrtrm6xtc7m7eix3ybialw.png)
Adding the like terms, we get,
![21 x^(3)-46 x^(2)+59 x-30](https://img.qammunity.org/2021/formulas/mathematics/high-school/1awsc6766ymhixkkhiqgmg1uo7kwogs8wj.png)
Hence, the simplified expression is
![21 x^(3)-46 x^(2)+59 x-30](https://img.qammunity.org/2021/formulas/mathematics/high-school/1awsc6766ymhixkkhiqgmg1uo7kwogs8wj.png)
Therefore, the solution is
![21 x^(3)-46 x^(2)+59 x-30](https://img.qammunity.org/2021/formulas/mathematics/high-school/1awsc6766ymhixkkhiqgmg1uo7kwogs8wj.png)