Answer:
1). Serial ATA (SATA): SATA drives are base hard drives. Serial ATA was designed to replace the older parallel ATA (PATA) standard (often called by the old name IDE), offering several advantages over the older interface: reduced cable size and cost (7 conductors instead of 40), native hot swapping, faster data transfer through higher signaling rates, and more efficient transfer through a I/O queuing protocol. On some systems without a controller, these can be cabled instead to the onboard SATA connections on the motherboard. On smaller servers with a controller, they can still be cabled because these systems will not have a backplane. Cabled hard drives are not hot swappable.
2). Near Line SAS: Near Line SAS are enterprise SATA drives with a SAS interface, head, media, and rotational speed of traditional enterprise-class SATA drives with the fully capable SAS interface typical for classic SAS
drives. This provides better performance and reliability over SATA. Basically it is a hybrid between SATA and SAS.
3). Serial Attached SCSI (SAS): SAS is a communication protocol used in Enterprise hard drives and tape drives. SAS is a point-to-point serial protocol that replaces the older based parallel SCSI bus technology (SCSI). It uses the standard SCSI command set. These have extra connections through the top of the SATA connection. These are the top end in performance for electromechanical drives.
4). Solid-State Drive (SSD): An SSD is a data storage device that uses integrated circuit assemblies as memory to store data persistently. SSD technology uses electronic interfaces compatible with traditional block input/output (I/O) hard disk drives. SSDs do not employ any moving mechanical components, which distinguishes them from traditional magnetic disks such as hard disk drives, which are electromechanical devices containing spinning disks and movable read/write heads. Compared with electromechanical disks, SSDs are typically less susceptible to physical shock, are silent, and have lower access time and latency. Typically because of these features, SSD drives can be the fastest I/O in the market today in standard hard drive form factor.
Step-by-step explanation: