Angle A = 36.87°.
Solution:
Given data:
The side opposite to angle A is a.
The side opposite to angle B is b.
The side opposite to angle C is c.
a = 6, b = 8, c = 10
Using law of cosine:
![a^(2)=b^(2)+c^(2)-2 b c \cos A](https://img.qammunity.org/2021/formulas/mathematics/high-school/99dkx1pbx4mu27rkfkrebd6it91bfodaua.png)
Substitute the given values in the formula,
![6^(2)=8^(2)+10^(2)-2* 8 * 10 \cos A](https://img.qammunity.org/2021/formulas/mathematics/high-school/obts85r4aamhu9uzwk035osxyg2wafqbcn.png)
![36=64+100-160 \cos A](https://img.qammunity.org/2021/formulas/mathematics/high-school/f1tbdzmy7oraoxwpa0bcjhnqrtr34c4v67.png)
![36=164-160 \cos A](https://img.qammunity.org/2021/formulas/mathematics/high-school/mm4kt3zl7brzpxwvbxt76zofp013kg570k.png)
Subtract 164 from both sides of the equation.
![-128=-160 \cos A](https://img.qammunity.org/2021/formulas/mathematics/high-school/m2elixtbwj5ibfbouiwo6q6gg19y5jyn0q.png)
Divide by –160 on both sides of the equation.
![$(-128)/(-160) =(-160 )/(-160 ) \cos A](https://img.qammunity.org/2021/formulas/mathematics/high-school/63hihnuqqvgv2qc0n1pt7ehhb4p8h9kbbp.png)
![$(4)/(5) =\cos A](https://img.qammunity.org/2021/formulas/mathematics/high-school/p524bizkxov6fhgp4pxeziys4p9jpqbcdl.png)
Switch the sides.
![$\cos A=(4)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gsyi604vpwngs79iozuv21817q872gorsb.png)
![$ A=\cos^(-1)\left((4)/(5)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/e8atzz1t4rbh00q7w8cwnpts44k77f4k8s.png)
A = 36.87°
Hence angle A = 36.87°.