233k views
3 votes
Using the right triangle below, find the cosine of angle A.

Using the right triangle below, find the cosine of angle A.-example-1
User ForEveR
by
6.1k points

1 Answer

5 votes

Angle A = 36.87°.

Solution:

Given data:

The side opposite to angle A is a.

The side opposite to angle B is b.

The side opposite to angle C is c.

a = 6, b = 8, c = 10

Using law of cosine:


a^(2)=b^(2)+c^(2)-2 b c \cos A

Substitute the given values in the formula,


6^(2)=8^(2)+10^(2)-2* 8 * 10 \cos A


36=64+100-160 \cos A


36=164-160 \cos A

Subtract 164 from both sides of the equation.


-128=-160 \cos A

Divide by –160 on both sides of the equation.


$(-128)/(-160) =(-160 )/(-160 ) \cos A


$(4)/(5) =\cos A

Switch the sides.


$\cos A=(4)/(5)


$ A=\cos^(-1)\left((4)/(5)\right)

A = 36.87°

Hence angle A = 36.87°.

User Waxen
by
5.7k points