220k views
5 votes
Am I correct on question #6?

Am I correct on question #6?-example-1
User Fabilous
by
5.5k points

1 Answer

4 votes

Option A:


\tan(105^\circ)=-(2+√(3))

Solution:

To evaluate tan(105)°:

105° can be written as sum of 60° and 45°.

tan(105)° = tan(45 + 60)°

Using the summation identity:


$\tan (x+y)=(\tan (x)+\tan (y))/(1-\tan (x) \tan (y))


$\tan \left(105^(\circ)\right)=(\tan \left(45^(\circ)\right)+\tan \left(60^(\circ)\right))/(1-\tan \left(45^(\circ)\right) \tan \left(60^(\circ)\right))

We know that, tan(45)° = 1 and tan(60)° = √3

Substitute this in the above equation.


$=(1+√(3))/(1-1 \cdot √(3))


$=(1+√(3))/(1-√(3))

To rationalize the denominator multiply by the conjugate
(1+√(3))/(1+√(3)).


$=((1+√(3))(1+√(3)))/((1-√(3))(1+√(3)))

Using exponent formula:
a^(b) \cdot a^(c)=a^(b+c) and
(x-y)(x+y)=x^2-y^2


$=((1+√(3))^2)/((1^2-(√(3))^2))

Using exponent formula:
(a+b)^(2)=a^(2)+2 a b+b^(2)


$=(1^(2)+2 \cdot 1 \cdot √(3)+(√(3))^(2))/(1-3)


$=(4+2 √(3))/(-2)


$=(2(2+ √(3)))/(-2)


=-(2+√(3))


\tan(105^\circ)=-(2+√(3))

Hence option A is the correct answer.

User Maxim Metelskiy
by
4.9k points