Answer:
a)
![X \sim Unif(a= 1, b=5)](https://img.qammunity.org/2021/formulas/mathematics/college/wpez83pfcl9scifp6gl8hjghq5l1sfxcip.png)
The density function for this case is given by:
![f(X) = (1)/(b-a)= (1)/(5-1)= (1)/(4) , 1\leq X \leq 5](https://img.qammunity.org/2021/formulas/mathematics/college/n3uahux2qurt4fx0i90l1agfa5h38imas0.png)
And the distribution is on the figure attached
b)
![P(X <1.5)](https://img.qammunity.org/2021/formulas/mathematics/college/qzyzvxp1qjwlpq3d3t6gk5iu85711r5ihm.png)
And for this case we can use the cumulative distribution function given by:
![F(x) = (x-a)/(b-a)= (x-1)/(5-1)= (x-1)/(4), 1\leq X \leq 5](https://img.qammunity.org/2021/formulas/mathematics/college/fif6f6knsao8xablv0ixmjtb90u16ts23w.png)
And if we use this formula we got:
![P(X<1.5) = (1.5-1)/(4)= (0.5)/(4)= (1)/(8)=0.125](https://img.qammunity.org/2021/formulas/mathematics/college/qqwn835udozqir6slns5r891jml4ej3brv.png)
c)
![P(X >2.5)](https://img.qammunity.org/2021/formulas/mathematics/college/th5mstns0e8iuwxas33cj9tufe8qktauo2.png)
And we can use the complement rule and the cimulative distribution function and we can rewrite the expression like this:
![P(X >2.5) = 1-P(X<2.5) = 1-F(2.5) = 1-(2.5-1)/(5-1)= 1-(1.5)/(4)= 1-(3)/(8)= (5)/(8)=0.625](https://img.qammunity.org/2021/formulas/mathematics/college/cy35nu251gs9g15ab2w6thpq5ol4y5iakn.png)
d)
![P(X<1) = (1-1)/(4)= (0)/(4)= 0](https://img.qammunity.org/2021/formulas/mathematics/college/ouxqulpjt5z139pmiaz3t47s9p606qy7wd.png)
Explanation:
Part a
For this case we define the random variable X and the distribution for X is given by:
![X \sim Unif(a= 1, b=5)](https://img.qammunity.org/2021/formulas/mathematics/college/wpez83pfcl9scifp6gl8hjghq5l1sfxcip.png)
The density function for this case is given by:
![f(X) = (1)/(b-a)= (1)/(5-1)= (1)/(4) , 1\leq X \leq 5](https://img.qammunity.org/2021/formulas/mathematics/college/n3uahux2qurt4fx0i90l1agfa5h38imas0.png)
And the distribution is on the figure attached
Part b
For this case we want this probability:
![P(X <1.5)](https://img.qammunity.org/2021/formulas/mathematics/college/qzyzvxp1qjwlpq3d3t6gk5iu85711r5ihm.png)
And for this case we can use the cumulative distribution function given by:
![F(x) = (x-a)/(b-a)= (x-1)/(5-1)= (x-1)/(4), 1\leq X \leq 5](https://img.qammunity.org/2021/formulas/mathematics/college/fif6f6knsao8xablv0ixmjtb90u16ts23w.png)
And if we use this formula we got:
![P(X<1.5) = (1.5-1)/(4)= (0.5)/(4)= (1)/(8)=0.125](https://img.qammunity.org/2021/formulas/mathematics/college/qqwn835udozqir6slns5r891jml4ej3brv.png)
Part c
For this case we want this probability:
![P(X >2.5)](https://img.qammunity.org/2021/formulas/mathematics/college/th5mstns0e8iuwxas33cj9tufe8qktauo2.png)
And we can use the complement rule and the cimulative distribution function and we can rewrite the expression like this:
![P(X >2.5) = 1-P(X<2.5) = 1-F(2.5) = 1-(2.5-1)/(5-1)= 1-(1.5)/(4)= 1-(3)/(8)= (5)/(8)=0.625](https://img.qammunity.org/2021/formulas/mathematics/college/cy35nu251gs9g15ab2w6thpq5ol4y5iakn.png)
Part d" What is the probability that X lies below 1?
![P(X <1)](https://img.qammunity.org/2021/formulas/mathematics/college/g357n2dvytd92c18t2fydnjtd8eevbx7mx.png)
And for this case we can use the cumulative distribution function given by:
![F(x) = (x-a)/(b-a)= (x-1)/(5-1)= (x-1)/(4), 1\leq X \leq 5](https://img.qammunity.org/2021/formulas/mathematics/college/fif6f6knsao8xablv0ixmjtb90u16ts23w.png)
And if we use this formula we got:
![P(X<1) = (1-1)/(4)= (0)/(4)= 0](https://img.qammunity.org/2021/formulas/mathematics/college/ouxqulpjt5z139pmiaz3t47s9p606qy7wd.png)