170k views
2 votes
What is the simplified form of the following expression?

What is the simplified form of the following expression?-example-1
User Everspader
by
8.0k points

1 Answer

6 votes

Option C:


$\frac{\sqrt[3]{100 x}}{5}=\sqrt[3]{(4 x)/(5)}

Solution:

Given expression is


$\sqrt[3]{(4 x)/(5)}

Note:
\sqrt[3]{125}=\sqrt[3]{{5^3}} = 5

To find the correct expression for the above simplified expression.

Option A:
\frac{\sqrt[3]{4 x}}{5}

5 can be written as
\sqrt[3]{125}.


$\frac{\sqrt[3]{4 x}}{5}=\frac{\sqrt[3]{4 x}}{\sqrt[3]{125} }


$=\sqrt[3]{(4x)/(125) }

It is not the given simplified expression.

Option B:
\frac{\sqrt[3]{20 x}}{5}


$\frac{\sqrt[3]{20 x}}{5}=\frac{\sqrt[3]{20 x}}{\sqrt[3]{125} }


$=\sqrt[3]{(20x)/(125) }

Cancel the common factor in both numerator and denominator.


$=\sqrt[3]{(4x)/(25) }

It is not the given simplified expression.

Option C:
\frac{\sqrt[3]{100 x}}{5}


$\frac{\sqrt[3]{100 x}}{5}=\frac{\sqrt[3]{100 x}}{\sqrt[3]{125} }


$=\sqrt[3]{(100x)/(125) }

Cancel the common factor in both numerator and denominator.


$=\sqrt[3]{(4 x)/(5)}

It is the given simplified expression.

Option D:
\frac{\sqrt[3]{100 x}}{125}


$\frac{\sqrt[3]{100 x}}{125}=\frac{\sqrt[3]{100 x}}{5^3}

It is not the given simplified expression.

Hence Option C is the correct answer.


$\frac{\sqrt[3]{100 x}}{5}=\sqrt[3]{(4 x)/(5)}

User Mlevit
by
8.0k points