Option C:
![$\frac{\sqrt[3]{100 x}}{5}=\sqrt[3]{(4 x)/(5)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ywkzzhg4mzk1y1jedxrkh51c5nqy2nor6r.png)
Solution:
Given expression is
![$\sqrt[3]{(4 x)/(5)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6w8ehc7xjpfvv2ephf8uxn3247c98a6b1j.png)
Note:
![\sqrt[3]{125}=\sqrt[3]{{5^3}} = 5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sqi3nt0ukveowyxq5nkcazql1uzef7aats.png)
To find the correct expression for the above simplified expression.
Option A:
![\frac{\sqrt[3]{4 x}}{5}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vcdrbpgoiof7fgrisv362qbnnk97x5rqel.png)
5 can be written as
.
![$\frac{\sqrt[3]{4 x}}{5}=\frac{\sqrt[3]{4 x}}{\sqrt[3]{125} }](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pj5hswc6ce8veq1bh6tdvuvjeaoianhz94.png)
![$=\sqrt[3]{(4x)/(125) }](https://img.qammunity.org/2021/formulas/mathematics/middle-school/evio4lw4xsqcbwhj4jgqe8k4n6iibdeghs.png)
It is not the given simplified expression.
Option B:
![\frac{\sqrt[3]{20 x}}{5}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xuocs20nfdj1vr0ew0wnrvlcmf36tytx8m.png)
![$\frac{\sqrt[3]{20 x}}{5}=\frac{\sqrt[3]{20 x}}{\sqrt[3]{125} }](https://img.qammunity.org/2021/formulas/mathematics/middle-school/umtslvlmki6d23ortdf5zqm44a0xxafw8r.png)
![$=\sqrt[3]{(20x)/(125) }](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jcytr7nyx2012ae1owut4f1fqoeboe8770.png)
Cancel the common factor in both numerator and denominator.
![$=\sqrt[3]{(4x)/(25) }](https://img.qammunity.org/2021/formulas/mathematics/middle-school/uoxdck3au6coqedrr1ynurfmzvzm2jolil.png)
It is not the given simplified expression.
Option C:
![\frac{\sqrt[3]{100 x}}{5}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/htj7ksrpskqg1qynnauaq5f6brskovljfc.png)
![$\frac{\sqrt[3]{100 x}}{5}=\frac{\sqrt[3]{100 x}}{\sqrt[3]{125} }](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f0r64ema69ue7x23phajjslve7i9fg26mx.png)
![$=\sqrt[3]{(100x)/(125) }](https://img.qammunity.org/2021/formulas/mathematics/middle-school/22x0y1jytvryhzckwcaropkd80w35kxw45.png)
Cancel the common factor in both numerator and denominator.
![$=\sqrt[3]{(4 x)/(5)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hpxmaylrmnpd2cjxogftvdj3g5zblns34m.png)
It is the given simplified expression.
Option D:
![\frac{\sqrt[3]{100 x}}{125}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ksmsi7ay1qgbfprongogya66ab667m59xz.png)
![$\frac{\sqrt[3]{100 x}}{125}=\frac{\sqrt[3]{100 x}}{5^3}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/l2mrtl2xik17pk1r84m3ll9qg5ifz5xd5h.png)
It is not the given simplified expression.
Hence Option C is the correct answer.
![$\frac{\sqrt[3]{100 x}}{5}=\sqrt[3]{(4 x)/(5)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ywkzzhg4mzk1y1jedxrkh51c5nqy2nor6r.png)