135k views
2 votes
Calculate the wavelength of the light emitted when an electron in a one-dimensional box of length 5.4 nmnm makes a transition from the n=9n=9 state to the n=8n=8 state.

User Saggex
by
4.2k points

1 Answer

1 vote

Answer : The wavelength of the light emitted is,
5.66* 10^(-24)m

Explanation :

The energy level of quantum particle in a one-dimensional box is given as:


E_n=(n^2h^2)/(8mL^2)

or,


\Delta E=E_9-E_8=(n_9^2h^2)/(8mL^2)-(n_8^2h^2)/(8mL^2)


\Delta E=E_9-E_8=(h^2)/(8mL^2)* (n_9^2-n_8^2)

where,


E_n = change in energy

n = energy level

h = Planck's constant =
6.626* 10^(-34)Js

m = mass of electron =
9.109* 10^(-31)kg

L = length of a one-dimensional box =
5.4nm=5.4* 10^(-9)m

Now put all the given values in the above formula, we get:


\Delta E=E_9-E_8=((6.626* 10^(-34)Js)^2)/(8* (9.109* 10^(-31)kg)* (5.4* 10^(-9)m)^2)* [(9)^2-(8)^2]


\Delta E=E_9-E_8=3.5124* 10^(-2)J

Now we have to calculate the wavelength of the light emitted.


\Delta E=(hc)/(\lambda)

where,

h = Planck's constant =
6.626* 10^(-34)Js

c = speed of light =
3* 10^(8)m/s


\lambda = wavelength of the light

Now put all the given values in the above formula, we get:


3.5124* 10^(-2)J=((6.626* 10^(-34)Js)* (3* 10^(8)m/s))/(\lambda)


\lambda=5.66* 10^(-24)m

Thus, the wavelength of the light emitted is,
5.66* 10^(-24)m