Answer:
Length of the curve = 1.207 units
Explanation:
y =
for 1 ≤x≤8
The formula for finding the length of a curve is:
Length of a curve =
![\int\limits^a_b {\sqrt{1 + ((dy)/(dx))^(2) } } \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/9xkzafh1cafy2v89lfg40f6a6rvjl7w0yz.png)
To compute the length we need (dy/dx)². So,
dy/dx =
![(4)/(3) * (3)/(4) x^((4/3) -1) - (2)/(3)*(3)/(8)x^((2/3) - 1)](https://img.qammunity.org/2021/formulas/mathematics/college/7r8fwjpoml7a2pxbac5q5ensa238zb5pmj.png)
dy/dx =
![x^(1/3) - (1)/(4) x^(-1/3)](https://img.qammunity.org/2021/formulas/mathematics/college/pwi84zo22eez3bta16xv0vp4z80nmrarzs.png)
(dy/dx)² = (
)²
(dy/dx)² =
![x^(2/3) - (1)/(16) x^(-2/3)](https://img.qammunity.org/2021/formulas/mathematics/college/v87y6ydx103s9xloyt5zzihcz98msoqix1.png)
Length of a curve =
![\int\limits^a_b {\sqrt{1 + ((dy)/(dx))^(2) } } \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/9xkzafh1cafy2v89lfg40f6a6rvjl7w0yz.png)
=
![\int\limits^8_1 {\sqrt{1 + x^(2/3) - (1)/(16) x^(-2/3) } } \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/eglio7pf2hkp3r55ykutivb93cscy9p200.png)
=
[(1 + x^(2/3) - (1/16)(x^-2/3)]^1/2 dx
= 2/3 [(1 + x^(2/3) - (1/16)(x^-2/3)]^3/2 * [(2/3)*x^-1/3 + (1/24)*x^(-5/3)]
Applying limits 1 to 8:
(2/3)*[(1 + (8)^(2/3) - (1/16)(8)^(-2/3)]^3/2 * [(2/3)*(8)^(-1/3) + (1/24)*(8)^(-5/3)] - (2/3)*[(1 + (1)^(2/3) - (1/16)(1)^(-2/3)]^3/2 * [(2/3)*(1)^(-1/3) + (1/24)*(1)^(-5/3)]
= (2/3)*(11.12)*(0.3346) - (2/3)*(2.6968)*(0.7083)
= 2.4805 - 1.2734
Length of the curve = 1.207 units