60.3k views
0 votes
H2S(aq)⇌HS−(aq)+H+(aq), K1 = 9.06×10−8, and HS−(aq)⇌S2−(aq)+H+(aq), K2 = 1.18×10−19, what is the equilibrium constant Kfinal for the following reaction? S2−(aq)+2H+(aq)⇌H2S(aq)

1 Answer

6 votes

Answer:

Therefore the equilibrium constant
K_(final) is 9.35× 10²⁵

Step-by-step explanation:

Equilibrium constant:

Equilibrium constant is used to find out the ratio of the concentration of the product to that of reactant.

xA+yB→zC

The equilibrium constant K,


k=([C]^z)/([A]^x[B]^y)

Here [A] is equilibrium concentration of A

[B] is equilibrium concentration of B

[C] is equilibrium concentration of C.

1.
H_2S(aq)\rightleftharpoons HS^-(aq)+H^+(aq)
K_1= 9.06 * 10^(-8)


K_1=([HS^-][H^+])/([H_2S])

2.
HS^-(aq)\rightleftharpoons S^(2-)(aq)+H^+(aq)
K_2= 1.18 * 10^(-19)


K_2=([S^(2-)][H^+])/([HS^-])

3.


S^(2-)(aq)+2H^+(aq)\rightleftharpoons H_2S(aq)


K_3=([H_2S])/([S^(2-)][H^+]^2)

Therefore,


k_1k_2=([HS^-][H^+])/([H_2S])([S^(2-)][H^+])/([HS^-])


\Rightarrow k_1k_2=([S^(2-)][H^+]^2)/([H_2S])


\Rightarrow k_1k_2=(1)/(K_3)


\Rightarrow K_3=(1)/(K_1K_2)


\Rightarrow K_3=(1)/(9.06* 10^(-8)* 1.18* 10^(-19))

⇒K₃=9.35× 10²⁵


K_3=K_(final)

Therefore the equilibrium constant
K_(final) is 9.35× 10²⁵

User Anupam Sharma
by
3.7k points