Option C:
is equivalent to the given expression.
Solution:
Given expression:
![$(-18 a^(-2) b^(5))/(-12 a^(-4) b^(-6))](https://img.qammunity.org/2021/formulas/mathematics/high-school/tdwkx1q33zmv6mlc9gl0gohaw2387spgh6.png)
To find which expression is equivalent to the given expression.
![$(-18 a^(-2) b^(5))/(-12 a^(-4) b^(-6))](https://img.qammunity.org/2021/formulas/mathematics/high-school/tdwkx1q33zmv6mlc9gl0gohaw2387spgh6.png)
Using exponent rule:
![(1)/(a^m)=a^(-m), \ \ (1)/(a^(-m))=a^(m)](https://img.qammunity.org/2021/formulas/mathematics/high-school/b8sh4j86tah717jezz7zk89kjmey1v7n57.png)
![$=(-18 a^(-2) b^(5)a^(4) b^(6))/(-12 )](https://img.qammunity.org/2021/formulas/mathematics/high-school/ijfy6b3hpp3a12ixjeu8d5zshw640u2195.png)
![$=(-18 a^(-2) a^(4) b^(5) b^(6))/(-12 )](https://img.qammunity.org/2021/formulas/mathematics/high-school/58orerpb53nvc01ehlh4hhatnjjhn5z1nq.png)
Using exponent rule:
![{a^m}\cdot{a^n}=a^(m+n)](https://img.qammunity.org/2021/formulas/mathematics/high-school/yxcafcqr0hcvxtl7d2m7qwif6zobrm862x.png)
![$=(-18 a^((-2+4)) b^((5+6)))/(-12 )](https://img.qammunity.org/2021/formulas/mathematics/high-school/49cfs6whh2i92wm1l60pzpjovvl9w9gcdk.png)
![$=(-18 a^(2) b^(11))/(-12 )](https://img.qammunity.org/2021/formulas/mathematics/high-school/deiqtiuez3lugm6mrxqxa14ddumvl8h8ue.png)
Divide both numerator and denominator by the common factor –6.
![$=(3 a^(2) b^(11))/(2 )](https://img.qammunity.org/2021/formulas/mathematics/high-school/gmh9k3get8uynnjlq98c9sz843h6axkuhl.png)
![$(-18 a^(-2) b^(5))/(-12 a^(-4) b^(-6))=(3 a^(2) b^(11))/(2 )](https://img.qammunity.org/2021/formulas/mathematics/high-school/jbte384cdl10ez9ha5ck0uw2wa9fsds1vg.png)
Therefore,
is equivalent to the given expression.
Hence Option C is the correct answer.