Answer:
![C'(y) = 50 -(3900000)/(y^2)=0](https://img.qammunity.org/2021/formulas/business/college/quj79x4xek8c9fzpq1kbicdy5r0ts1bf3l.png)
And we can solve for y and we got:
![y = \sqrt{(3900000)/(50)}= 279.285](https://img.qammunity.org/2021/formulas/business/college/rzmtjdwb5uf4zddvr05pnw8b1cuxxa41km.png)
And using condition (1) we can solve for x and we got:
![x= (60000)/(279.285)= 214.834](https://img.qammunity.org/2021/formulas/business/college/3i1gxqhn9frylzd891vqja24l5biek0e15.png)
So then the minimum cost for this case would be:
![C = 50*279.285 + 65*214.834 = 27928.49](https://img.qammunity.org/2021/formulas/business/college/4j8jyer9f2g9q3zqy03lq3qelx53l9wtjd.png)
Step-by-step explanation:
For this case the graph attached illustrate the problem for this case
We know that the total area is 60000, so then we have:
![xy = 60000](https://img.qammunity.org/2021/formulas/business/college/ca1vtvl9jrgcu0tpmv6bp6d0qjkqjs14y9.png)
If we solve for x we got:
(1)
Now we can define the cost function like this:
![C = 2*(25)*y + 25 x +40 x](https://img.qammunity.org/2021/formulas/business/college/5nvfvn4ahg713t3v61556td74bjqkrznj3.png)
![C(x,y) = 50 y + 65 x](https://img.qammunity.org/2021/formulas/business/college/4zhlx842z9flz3xgcj91wgkahvjqtpnv7n.png)
We can use the condition (1) and if we replace in the cost function we have:
![C(y) = 50 y + 65((60000)/(y))](https://img.qammunity.org/2021/formulas/business/college/24wyg091rnie5xjqxyj5ueaetq2jt1kffm.png)
Since we need to minimize the cost, we can derivate the function in terms of y and we got:
![C'(y) = 50 -(3900000)/(y^2)=0](https://img.qammunity.org/2021/formulas/business/college/quj79x4xek8c9fzpq1kbicdy5r0ts1bf3l.png)
And we can solve for y and we got:
![y = \sqrt{(3900000)/(50)}= 279.285](https://img.qammunity.org/2021/formulas/business/college/rzmtjdwb5uf4zddvr05pnw8b1cuxxa41km.png)
And using condition (1) we can solve for x and we got:
![x= (60000)/(279.285)= 214.834](https://img.qammunity.org/2021/formulas/business/college/3i1gxqhn9frylzd891vqja24l5biek0e15.png)
So then the minimum cost for this case would be:
![C = 50*279.285 + 65*214.834 = 27928.49](https://img.qammunity.org/2021/formulas/business/college/4j8jyer9f2g9q3zqy03lq3qelx53l9wtjd.png)