Answer: The equilibrium concentration of
is 0.332 M
Step-by-step explanation:
We are given:
Initial concentration of
= 2.00 M
The given chemical equation follows:
![2COF_2(g)\rightleftharpoons CO_2(g)+CF_4(g)](https://img.qammunity.org/2021/formulas/chemistry/college/5bbnf4xv3d1evocmr2x1ryc1gr0i6l5gtc.png)
Initial: 2.00
At eqllm: 2.00-2x x x
The expression of
for above equation follows:
![K_c=([CO_2][CF_4])/([COF_2]^2)](https://img.qammunity.org/2021/formulas/chemistry/college/rldeuskdfeiwa3ex8ekjksq6x9ojp2wyoa.png)
We are given:
![K_c=6.30](https://img.qammunity.org/2021/formulas/chemistry/college/xxsjl2rejnaditvo5loxpap9vteorwme7s.png)
Putting values in above expression, we get:
![6.30=(x* x)/((2.00-2x)^2)\\\\x=0.834,1.25](https://img.qammunity.org/2021/formulas/chemistry/college/27tsybitx2dpgcs614y7wumqxejufnifpm.png)
Neglecting the value of x = 1.25 because equilibrium concentration of the reactant will becomes negative, which is not possible
So, equilibrium concentration of
![COF_2=(2.00-2x)=[2.00-(2* 0.834)]=0.332M](https://img.qammunity.org/2021/formulas/chemistry/college/plp3osc3zysbwk29em3swdl2collsj9f4d.png)
Hence, the equilibrium concentration of
is 0.332 M