Answer:
Explanation:
tan Θ + tan 2Θ + √3 tan Θ tan 2Θ = √3
tan Θ + tan 2Θ = √3 - √3 tan Θ tan 2Θ
tan Θ + tan 2Θ = √3 ( 1 - tan Θ tan 2Θ)
(tan Θ + tan 2Θ) / (1 - tanΘ tan 2Θ) = √3
tan(Θ + 2Θ) = √3
tan 3Θ = tan (
) we know tan Θ = tan α; Θ = nΠ + α, n belongs to z
3Θ = nΠ + Π/3
Θ = nπ/3 + Π/9 for all n in Z