Answer:
![\left((2)/(3),(1)/(5)\right)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/viewi1b0s4bmoiujkbp24a2ctqxnd3i0qg.png)
Explanation:
Given the system of two equations:
![\left\{\begin{array}{l}(1)/(2)x-(3)/(4)y=(11)/(60)\\ \\(2)/(5)x+(1)/(6)y=(3)/(10)\end{array}\right.](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9sqpxa5o7frazwkvc5kzxfznee983hi3mk.png)
Multiply the first equation and the second equation by 60 to get rid of fractions:
![\left\{\begin{array}{l}30x-45y=11\\ \\24x+10y=18\end{array}\right.](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pk8aqec7q9g03q080yejoweeakqmh35op7.png)
Now multiply the first equation by 4 and the second equation by 5:
![\left\{\begin{array}{l}120x-180y=44\\ \\120x+50y=90\end{array}\right.](https://img.qammunity.org/2021/formulas/mathematics/middle-school/s2mwqmtpv3a9yzr9fmndfbqq439ull1hd6.png)
Subtract them:
![(120x-180y)-(120x+50y)=44-90\\ \\120x-180y-120x-50y=-46\\ \\-230y=-46\\ \\y=(46)/(230)=(1)/(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/owtvqxa3qc48n7vee5lde46epg2u2ui1n0.png)
Substitute it into the first equation:
![30x-45\cdot (1)/(5)=11\\ \\30x-9=11\\ \\30x=11+9\\ \\30x=20\\ \\x=(2)/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xov2a99nknlnjebes0o1gi8jox0ytqz218.png)
The solution is