63.8k views
0 votes
Give the exact value of the expression without using a calculator.

sine left parenthesis 2 tangent Superscript negative 1 Baseline eight fifteenths right parenthesis

User Dileet
by
8.0k points

1 Answer

4 votes

Answer:


\sin \left(\tan^(-1) \left((8)/(15)\right)\right)=(8)/(17).

Explanation:

To find the exact value of the expression
\sin(\tan^(-1)((8)/(15) ))

First, we need to simplify the expression
\sin(\tan^(-1)(x)).

Draw a triangle in the plane with vertices
(1,x),
(1,0), and the origin. Then
\tan^(-1)(x) is the angle between the positive x-axis and the ray beginning at the origin and passing through
(1,x).

Therefore,


\sin(\tan^(-1)(x))=\frac{x}{\sqrt{1+x^(2) } }


\mathrm{Multiply\:by\:the\:conjugate}\:(√(1+x^2))/(√(1+x^2))


(x√(1+x^2))/(√(1+x^2)√(1+x^2))


√(1+x^2)√(1+x^2)=1+x^2


\sin(\tan^(-1)(x))=(x√(1+x^2))/(1+x^2)

Now, use the identity
\sin(\tan^(-1)(x))=(x√(1+x^2))/(1+x^2)


\sin(\tan^(-1)((8)/(15) ))=\frac{\left((8)/(15)\right)\sqrt{1+\left((8)/(15)\right)^2}}{1+\left((8)/(15)\right)^2}\\\\\frac{(8)/(15)\sqrt{\left((8)/(15)\right)^2+1}}{1+(8^2)/(15^2)}\\\\((136)/(225))/(1+(8^2)/(15^2))\\\\((136)/(225))/(1+(64)/(225))\\\\(136)/(225\cdot (289)/(225))\\\\(136)/(289)=(8)/(17)\\\\\sin \left(\tan^(-1) \left((8)/(15)\right)\right)=(8)/(17)

Give the exact value of the expression without using a calculator. sine left parenthesis-example-1
User Andrew Leach
by
7.6k points