Answer:
![\displaystyle f'(x) = 4x - 1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fpmaj8yk2a5btgj8anh97yf7sp0j67fvar.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/bz16ipe6p14y3f6abzxt2zy0j41tg530u9.png)
Derivative Property [Addition/Subtraction]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Explanation:
Step 1: Define
Identify
![\displaystyle f(x) = 2x^2 - x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/usq82r3v90to5mnojqa3xx7xasq3df3vcv.png)
Step 2: Differentiate
- Derivative Property [Addition/Subtraction]:
![\displaystyle f'(x) = (d)/(dx)[2x^2] - (d)/(dx)[x]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dacun6ggisdr8xf514ybmi6qcrqg7hfrtt.png)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle f'(x) = 2 (d)/(dx)[x^2] - (d)/(dx)[x]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kqodrh10aix2odsjd5hk2oefb1tj0oxf14.png)
- Basic Power Rule:
![\displaystyle f'(x) = 4x - 1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fpmaj8yk2a5btgj8anh97yf7sp0j67fvar.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation