Answer:
The answer to the question is
The probability that at least one of the next three customers purchases premium gas is the complement of the probability that none of the next three customers purchase premium gas = 1 - (1-P(A))³ = 0.834
Explanation:
The probability that a customer would purchase premium grade = 45 %
That is P(A) = 0.45 and
The probability that the customer would purchase another grade = P(B) = 0.55
Therefore the probability of at least one of the next three customers purchase premium gas is
P(k=0) = (1 - P)ⁿ and the probability of at least one customer purchases premium gas is the compliment of the probability that the next three customers purchase another gas brand
that is (1 - P(A))×(1 - P(A))×(1 - P(A)) = P(B)×P(B)×P(B) = 0.55³ and the complement is 1 - 0.55³ = 0.834